101 research outputs found

    Water vapor concentration measurements in high purity gases by means of comb assisted cavity ring down spectroscopy

    Get PDF
    In manufacturing processes of semiconductor industry accurate detection and monitoring of water vapor concentration in trace amount is of great importance. The ability to perform reliable measurements in ultrapure gases, with a wide dynamic range and low uncertainty, can have a substantial impact on product quality and process performances. Here, we report on the development of a second-generation comb-assisted cavity ring-down spectrometer and present H2O mole fraction measurements in high-purity N2 gas. Based on the use of a pair of phase-locked lasers and referenced to an optical frequency comb synthesizer, the spectrometer allowed to record high-quality absorption spectra in coincidence with the 32,2 → 22,1 H2O transition at 1.3946 μm. Retrieval of water mole fractions, at levels as low as 380 part per billion, was accomplished through a careful spectra analysis procedure based on the use of refined line shape models which include speed-dependent effects. Measurements were performed with a statistical reproducibility of 5 parts per billion, for an integration time of about 0.2 s. The noise equivalent and minimum detectable absorption coefficients were found to be 3.1 × 10−11 cm−1/ √ and 6.5 × 10−12 cm−1 , respectively. This latter allowed for a minimum detectable water mole fraction (limit of detection) of 160 parts per trillion. Finally, the main sources of systematic uncertainty have been discussed and quantified.This work was done within the project PROMETH2O (EMPIR 20IND06), which received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme

    Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery.

    Get PDF
    RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts

    JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage

    Get PDF
    Obesity and insulin resistance are associated with oxidative stress, which may be implicated in the progression of obesity-related diseases. The kinase JNK1 has emerged as a promising drug target for the treatment of obesity and type 2 diabetes. JNK1 is also a key mediator of the oxidative stress response, which can promote cell death or survival, depending on the magnitude and context of its activation. In this article, we describe a study in which the long-term effects of JNK1 inactivation on glucose homeostasis and oxidative stress in obese mice were investigated for the first time. Mice lacking JNK1 (JNK1−/−) were fed an obesogenic high-fat diet (HFD) for a long period. JNK1−/− mice fed an HFD for the long term had reduced expression of antioxidant genes in their skin, more skin oxidative damage, and increased epidermal thickness and inflammation compared with the effects in control wild-type mice. However, we also observed that the protection from obesity, adipose tissue inflammation, steatosis, and insulin resistance, conferred by JNK1 ablation, was sustained over a long period and was paralleled by decreased oxidative damage in fat and liver. We conclude that compounds targeting JNK1 activity in brain and adipose tissue, which do not accumulate in the skin, may be safer and most effective.— Becattini, B., Zani, F., Breasson, L., Sardi, C., D’Agostino, V. G., Choo, M.-K., Provenzani, A., Park, J. M., Solinas, G. JNK1 ablation in mice confers long-term metabolic protection from diet-induced obesity at the cost of moderate skin oxidative damage

    Identification of a BAZ2A-Bromodomain Hit Compound by Fragment Growing

    Full text link
    BAZ2A is an epigenetic regulator affecting transcription of ribosomal RNA. It is overexpressed in aggressive and recurrent prostate cancer, promoting cellular migration. Its bromodomain is characterized by a shallow and difficult-to-drug pocket. Here, we describe a structure-based fragment-growing campaign for the identification of ligands of the BAZ2A bromodomain. By combining docking, competition binding assays, and protein crystallography, we have extensively explored the interactions of the ligands with the rim of the binding pocket, and in particular ionic interactions with the side chain of Glu1820, which is unique to BAZ2A. We present 23 high-resolution crystal structures of the holo BAZ2A bromodomain and analyze common bromodomain/ligand motifs and favorable intraligand interactions. Binding of some of the compounds is enantiospecific, with affinity in the low micromolar range. The most potent ligand has an equilibrium dissociation constant of 7 μM and a good selectivity over the paralog BAZ2B bromodomain

    Expression of Cellular and Extracellular TERRA, TERC and TERT in Hepatocellular Carcinoma

    Get PDF
    Non-coding RNAs are transcribed from telomeres and the telomeric repeat-containing RNAs (TERRA) are implicated in telomere homeostasis and in cancer. In this study, we aimed to assess in hepatocellular carcinoma (HCC) the cellular and extracellular expression of TERRA, the telomerase RNA subunit (TERC) and the telomerase catalytic subunit (TERT). We determined by qPCR the expression level of TERRA 1_2_10_13q, TERRA 15q, TERRA XpYp, TERC and of TERT mRNA in HCC tissues and in the plasma of HCC patients. Further, we profiled the same transcripts in the HCC cell lines, HA22T/VGH and SKHep1C3, and in the extracellular vesicles (EVs) derived from their secretomes. We found that the expression of TERRA and TERT mRNA was significantly deregulated in HCC, being TERRA downregulated and TERT mRNA upregulated in HCC tissues vs. the peritumoral (PT) ones, and the receiver operating characteristic (ROC) curve analyses revealed a significant ability in discriminating HCC from PT tissue. Further, the determinations of circulating TERRA and TERC showed higher amounts of these transcripts in the plasma of HCC patients vs. controls and ROC analyses gave significant results. The expression characterization of the cultured HCC cells showed their ability to produce and secrete TERRA and TERC into the EVs; the ability to produce TERT mRNA that was not detectable in the EVs; and the ability to respond to sorafenib treatment increasing TERRA expression. Our results highlight that: (i) both cellular and extracellular expressions of TERRA and TERC are dysregulated in HCC as well as the cellular expression of TERT mRNA and (ii) the combined detection of TERRA and TERC in plasma may represent a promising approach for non-invasive diagnostic molecular indicators of HCC

    The GSK3\u3b2 inhibitor BIS I reverts YAP-dependent EMT signature in PDAC cell lines by decreasing SMADs expression level

    Get PDF
    The Yes-associated protein, YAP, is a transcriptional co-activator, mediating the Epithelial to Mesenchymal Transition program in pancreatic ductal adenocarcinoma (PDAC). With the aim to identify compounds that can specifically modulate YAP functionality in PDAC cell lines, we performed a small scale, drug-based screening experiment using YAP cell localization as the read-out. We identified erlotinib as an inducer of YAP cytoplasmic localization, an inhibitor of the TEA luciferase reporter system and the expression of the bona fide YAP target gene, Connective Tissue Growth Factor CTGF. On the other hand, BIS I, an inhibitor of PKC\u3b4 and GSK3\u3b2, caused YAP accumulation into the nucleus. Activation of \u3b2-catenin reporter and interfering experiments show that inhibition of the PKC\u3b4/GSK3\u3b2 pathway triggers YAP nuclear accumulation inducing YAP/TEAD transcriptional response. Inhibition of GSK3\u3b2 by BIS I reduced the expression levels of SMADs protein and reduced YAP contribution to EMT. Notably, BIS I reduced proliferation, migration and clonogenicity of PDAC cells in vitro, phenocopying YAP genetic down-regulation. As shown by chromatin immunoprecipitation experiments and YAP over-expressing rescue experiments, BIS I reverted YAP-dependent EMT program by modulating the expression of the YAP target genes E-cadherin, vimentin, CTGF and of the newly identified target, CD133. In conclusion, we identified two different molecules, erlotinib and BIS I, modulating YAP functionality although via different mechanisms of action, with the second one specifically inhibiting the YAP-dependent EMT program in PDAC cell lines

    Fingerprints of nonextensive thermodynamics in a long-range Hamiltonian system

    Full text link
    We study the dynamics of a Hamiltonian system of N classical spins with infinite-range interaction. We present numerical results which confirm the existence of metaequilibrium Quasi Stationary States (QSS), characterized by non-Gaussian velocity distributions, anomalous diffusion, L\'evy walks and dynamical correlation in phase-space. We show that the Thermodynamic Limit (TL) and the Infinite-Time Limit (ITL) do not commute. Moreover, if the TL is taken before the ITL the system does not relax to the Boltzmann-Gibbs equilibrium, but remains in this new equilibrium state where nonextensive thermodynamics seems to apply.Comment: ReVteX, 10 pages, 5 ps figures, talk presented by V. Latora at NEXT 2001. Revised version with improved figs and updated refs. To be published in Physica

    Cancer cell metabolic plasticity allows resistance to NAMPT inhibition but invariably induces dependence on LDHA

    Get PDF
    Background: Inhibitors of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in NAD+ biosynthesis from nicotinamide, exhibit anticancer effects in preclinical models. However, continuous exposure to NAMPT inhibitors, such as FK866, can induce acquired resistance. Methods: We developed FK866-resistant CCRF-CEM (T cell acute lymphoblastic leukemia) and MDA MB231 (breast cancer) models, and by exploiting an integrated approach based on genetic, biochemical, and genome wide analyses, we annotated the drug resistance mechanisms. Results: Acquired resistance to FK866 was independent of NAMPT mutations but rather was based on a shift towards a glycolytic metabolism and on lactate dehydrogenase A (LDHA) activity. In addition, resistant CCRF-CEM cells, which exhibit high quinolinate phosphoribosyltransferase (QPRT) activity, also exploited amino acid catabolism as an alternative source for NAD+ production, becoming addicted to tryptophan and glutamine and sensitive to treatment with the amino acid transport inhibitor JPH203 and with L-asparaginase, which affects glutamine exploitation. Vice versa, in line with their low QPRT expression, FK866-resistant MDA MB231 did not rely on amino acids for their resistance phenotype. Conclusions: Our study identifies novel mechanisms of resistance to NAMPT inhibition, which may be useful to design more rational strategies for targeting cancer metabolism

    HuD is a neural translation enhancer acting on mTORC1-responsive genes and counteracted by the Y3 small non-coding RNA

    Get PDF
    The RNA-binding protein HuD promotes neurogenesis and favors recovery from peripheral axon injury. HuD interacts with many mRNAs, altering both stability and translation efficiency. We generated a nucleotide resolution map of the HuD RNA interactome in motor neuron-like cells, identifying HuD target sites in 1,304 mRNAs, almost exclusively in the 3' UTR. HuD binds many mRNAs encoding mTORC1-responsive ribosomal proteins and translation factors. Altered HuD expression correlates with the translation efficiency of these mRNAs and overall protein synthesis, in a mTORC1-independent fashion. The predominant HuD target is the abundant, small non-coding RNA Y3, amounting to 70% of the HuD interaction signal. Y3 functions as a molecular sponge for HuD, dynamically limiting its recruitment to polysomes and its activity as a translation and neuron differentiation enhancer. These findings uncover an alternative route to the mTORC1 pathway for translational control in motor neurons that is tunable by a small non-coding RNA

    Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases

    Get PDF
    Neurodegenerative diseases (NDs) are often associated with the presence of misfolded protein inclusions. The chaperone HSPB8 is upregulated in mice, the human brain and muscle structures affected during NDs progression. HSPB8 exerts a potent pro-degradative activity on several misfolded proteins responsible for familial NDs forms. Here, we demonstrated that HSPB8 also counteracts accumulation of aberrantly localized misfolded forms of TDP-43 and its 25 KDa fragment involved in most sporadic cases of Amyotrophic Lateral Sclerosis (sALS) and of Fronto Lateral Temporal Dementia (FLTD). HSPB8 acts with BAG3 and the HSP70/HSC70-CHIP complex enhancing the autophagic removal of misfolded proteins. We performed a high-through put screening (HTS) to find small molecules capable of inducing HSPB8 in neurons for therapeutic purposes. We identified two compounds, colchicine and doxorubicin, that robustly up-regulated HSPB8 expression. Both colchicine and doxorubicin increased the expression of the master regulator of autophagy TFEB, the autophagy linker p62/SQSTM1 and the autophagosome component LC3. In line, both drugs counteracted the accumulation of TDP-43 and TDP-25 misfolded species responsible for motoneuronal death in sALS. Thus, analogs of colchicine and doxorubicin able to induce HSPB8 and with better safety and tolerability may result beneficial in NDs models
    • …
    corecore